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Abstract

In this paper we look at the problem of factoring large sparse systems of equations on high-performance
multiprocessor workstations. While these multiprocessor workstations are capable of very high peak floating
point computation rates, most existing sparse factorization codes achieve only a small fraction of this potential.
A major limiting factor is the cost of memory accesses performed during the factorization. In this paper. we
describe a parallel factorization code which utilizes the supemodal structure of the matrix to reduce the number
of memory references. We also propose enhancements that significantly reduce the overall cache miss rate.
The result is greatly increased factorization performance. We present experimental results from executions of
our codes on the Silicon Graphics 4D/380 multiprocessor. Using eight processors, we find that the supemodal
parallel code achieves a computation rate of approximately 40 MFLOPS when factoring a range of benchmark
matrices. This is more than twice is fast as the parallel nodal code developed at the Oak Ridge National
Laboratory running on the SGI 4D/380.

1 Introduction

As microprocessors become more and more powerful, the set of domains in which they can be effectively used
continues to grow. Inexpensive microprocessors now offer performance exceeding that of supercomputers for
integer computations, and offer nearly equal performance on scalar floating point computations (e.g., Intel i860,
IBM RS/6000). The one domain where vector supercomputers continue to prevail, however, is in vectorizable
floating point computations. Inexpensive machines have been making inroads into this domain as well, as mul-
tiprocessor systems based on high-performance microprocessors are developed. These multiprocessors typically
have very high theoretical floating point computation rates. In practice, however, these rates are difficult to
realize. A number of factors, including high cache-miss rates, contention for the shared bus and main memory,
and the difficulty of distributing work, usually limit the attained computation rates.

It is therefore important to consider how various numerical problems can be effectively solved on such
machines. Just as vectar supercomputers required the recasting of numerical algorithms to better fit the vector
architecture of these machines, parallel machines also necessitate a restudying of these applications in order to
deal with a new set of bottlenecks. In this paper, we study the commonly occurring and important problem of
factoring a large sparse positive definite matrix. We look at how this problem can be attacked on a multiprocessor.
In order to make our results concrete, we perform experiments on the Silicon Graphics 4D/380, a modestly
parallel machine containing eight MIPS R3000/R3010 processors.

The main technique we use for improving sparse factorization performance is that of supemodal elimination
(2]. By exploiting the fact that adjacent columns in the sparse factor frequently have identical non-zero structures,
supemodal elimination allows one to perform operations with these columns more efficiently. A factorization
code which employs supemodal elimination can perform the factorization with many fewer memory references
and cache misses than a nodal code. Since the memory system is the main bottleneck in sparse factorization on
a high-performance workstation, the result is substantially improved performance [12]. A sequential supemodal

I



code runs more than twice as fast as SPARSPAK [9] on a single processor of the SGI 4D/380.

When incorporating supernodal elimination into a parallel code, a substantial load balancing problem arises.
The task grain size which results from a parallel supernodal scheme is often too large to allow effective
distribution of work to the processors. We describe a solution to the problem which involves heuristically
splitting the supernodes into smaller pieces in order to dec.rease the grain size. The parallel code that we
develop performs sparse factorization at a rate of approximately 40 MFLOPS when using 8 processors of the
SGI 4D/380. This is more than twice the performance obtained with the parallel factorization scheme developed
at the Oak Ridge National Laboratory [8].

This paper is organized as follows. In section 2, we discuss preliminaries. We give a brief overview of
two different approaches to sparse factorization, we describe the machine on which our study is performed,
and we describe the benchmark matrices which we use to evaluate factorization performance. In section 3,
we describe the parallel factorization scheme developed at the Oak Ridge National Laboratory, and present
performance numbers. Then in section 4, we briefly discuss supemodal techniques, and we describe a sequential
factorization implementation which uses these techniques. In section 5, we discuss a parallel implementation of
the supemodal factorization code. We discuss several issues which arise when supemodes are used in a parallel
code. We also present the performance of the supernodal parallel factorization code, and compare it with that
of the nodal code. Finally, in section 6 we give our conclusions.

2 Background

2.1 Sparse Factorization

The problem which we wish to solve in this paper is the direct solution of a system of equations A.r = , where
.4 is a sparse, symmetric, positive definite matrix. This system is solved by performing a Cholesky factorization
of the matrix .4, yielding a factor matrix L, where .4 = L L T, and then performing a pair of triangular system
solves to arrive at the value of x. The solution of this system is typically done in four steps. The first step,
ordering, heuristically reorders the rows and columns of .4 to decrease the amount of fill which will appear in
the factor. The next step, symbolic factorization, determines the structure of the factor matrix L and allocates the
appropriate storage for that structure. The third step, numerical factorization, determines the actual numerical
values which reside in the structure determined in the previous step. The fourth step, triangular solution, does
a pair of triangular system solves, using the computed factor L and the vector b, to arrive at the value of x.
In this paper, we focus on the most time-consuming of the four steps in Cholesky factorization, the numerical
factorization step (see [9] for more details).

In column-oriented Cholesky factorization, the primary computation consists of adding a multiple of one
column of factor L into another, in order to zero a non-zero in the upper triangle of L. This computation is
called a column cancellation. Column-oriented methods in general use one of two different approaches, the
left-looking and right-looking approaches 1. All factorization schemes which we discuss in this paper are based
on one of these two schemes. As will be seen in later sections, each of these two approaches will have a context
in which they result in a more efficient factorization code.

The left-looking approach performs column cancellations at the time the destination column is processed.
The following pseudo-code gives the structure of a left-looking factorization computation:

1. Set L = A
2. for j 1 to n do
3. for each k s.t. /., 0 do
4. Ij- ~ j.•1

5.
6. for each i s.t. lj 0 do
7. lj - liJ/Iljj

In step 4 of this pseudo-code, column j is canceled by column k. Note that this single step represents an
operation on the entire column. In steps 5 through 7, column j is scaled by the square root of the diagonal

In [91 these we called the inner-product and outer-product approaches, respectively.
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Figure 1: Overview of the SGI 4D/380 multiprocessor architecture.

element. The primary left-looking factorization method is the general sparse method, which is employed in
SPARSPAK [91.

The right-looking approach performs column cancellations at the time that the source column is processed.

1. Set L = A

2. for 4=- to ii do

3. G - ,/7
4. for each i s.t. 1,4 A0 do
5 . -/,//..
6. for each J s.t. 0,-0 do
7. 1.3 - ., - 1. 4.

Here the cancellations are done in step 7, and the column scaling is done in steps 3 through 5. The primary
right-looking method is the multifrontal method [6].

2.2 Factorization Benchmarking

In order to provide concrete performance comparisons for the various factorizatio , schemes which we discuss
in this paper, we will present performance numbers for the factorization of a nunber of benchmark matrices on
a commercially-available multiprocessor. In this subsection, we describe both the multiprocessor on which we
perform our experiments and the benchmark matrices which we factor on this machine.

The multiprocessor we use is the Silicon Graphics 4D/380 [3]. It supports 8 high-performance RISC
processors, each processor consisting of a MIPS R3000 integer unit and an R3010 floating point coprocessor.
The processors run at 33 MHz, and are rated at 29 MIPS and 4.9 double precision UNPACK MFLOPS. They
are interconnected with a bus, having a peak throughput of approximately 67 Mbytes per second. The processor
caches are kept coherent using a snoopy cache-coherence protocol [1]. The high-level organization of the
machine is shown in Figure 1.

Each processor in the 4D/380 has a 64 Kbyte instruction cache, a 64 Kbyte first-level data cache, and a
256 Kbyte second-level data cache. References which hit in the first-level data cache are serviced in a single
cycle. References which miss in the first-level cache but hit in the second-level cache require 8 cycles to
service, and result in a single 16-byte cache line being loaded into the first-level cache. References which miss
in both data caches require roughly 53 cycles to service. They result in four 16-byte lines being loaded into
the second-level cache and one 16-byte line being loaded into the first. The machine presents a shared-memory
parallel programming model.

The R3010 floating point coprocessor can perform a double precision add in 2 cycles and a double precision
multiply in 5 cycles. These figures do not include the time necessary to fetch the operands. In general, fetching
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Table 1: Benchmarks

I Name II Description Equations Non-zeroes
1. DENSE750 Dense symmetric matrix 750 561,750
2. LSIP3466 Finite element discretization of L-shaped region 3,466 20,430
3. BCSSTK15 Module of an Offshore Platform 3,948 113,868
4. BCSSTK16 Corps of Engineers Dam 4,884 285,494
5. BCSSTK29 Boeing 767 Rear Bulkhead 13,992 316,740

Table 2: Factorization information and runtimes on one processor of an SGI 4D/380.

Nonzeroes Floating point SPARSPAK Right-looking
Name in L ops (millions) runtime (s) MFLOPS runtime (s) MFLOPS

DENSE750 280,875 141.19 45.22 3.12 49.93 2.83
LSBP3466 83,116 4.14 1.24 3.34 1.51 2.74
BCSSTKI5 647.274 165.72 52.73 3.14 74.72 2.22
BCSSTKI6 736.294 149.89 46.18 3.25 61.70 2.43
BCSSTK29 1,680,804 394.87 128.54 3.07 181.34 2.18

the operands and storing the result may require more time than performing the floating point operation, due to
the high cost of cache misses.

The matrices which we use to evaluate sparse factorization performance are drawn from the Boeing-Harwell
sparse matrix test set [5], with the exception of matrix DENSE 750. In Table 1 we give brief descriptions of
each of the benchmark matrices which we study. We have tried to choose a variety of sizes and sparsities.
The matrix LSHP3466. for example, is small and very sparse. The matrix DENSE750, on the other hand, is
completely dense. The others are of medium size and sparsity.

3 Performance of Nodal Factorization Codes

In this section we look at the performance of the parallel factorization method developed at the Oak Ridge
National Laboratory [8). This method is a parallel implementation of the right-looking scheme which was
described in the previous section. While the ORNL scheme was originally designed for a message-passing
parallel computer, it is appropriate for shared-memory parallel machines as well.

The ORNL parallel factorization scheme can briefly be described as follows. Each column of the factor
matrix is owned by a particular processor, and all cancellations to a column are done by its owner processor.
The distribution of columns to processors is done using the scheme developed by Geist and Ng [7]. When a
column is complete, that is once the column has received all cancellations from other columns and has been
scaled, then a message is sent from the owner processor to all processors which own columns canceled by that
column. The message contains the values of the completed column. The processors receiving the messages
perform the appropriate column cancellations. This process continues until all columns are complete. Some
bookkeeping is necessary in order to keep track of when a column has received all cancellations which will be
done to it.

We now look at the performance obtained with the ORNL parallel factorization method on the SGI 4D/380.
The typical method for measuring the performance of a parallel code is to compute its parallel speedups relative
to an efficient sequential code. We therefore first determine the performance of a sequential factorization code.
While the parallel code is based on the right-looking approach, we consider sequential codes of both varieties.
It is not immediately clear which approach leads to a more efficient sequential code.

The left-looking code which we consider is a translation of the numerical factorization routines of SPARSPAK
into the C language. The right-looking code is simply a sequential version of the ORNL parallel scheme.
The performance for these two sequential factorization schemes is shown in Table 2. For these and all other
performance numbers in this paper, all floating point arithmetic is performed in double-precision, and all matrices
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Figure 2: Speedups for ORNL parallel scheme, relative to SPARSPAK.

are ordered with the minimum degree fill-reducing heuristic [9] before being factored.

It is clear from the performance results that the right-looking scheme is slightly less efficient than SPARSPAK.
This difference is due mainly to the time spent matching non-zeroes during column cancellation. The two
columns involved in the cancellation will in general have different non-zero structures, and the corresponding
entries from the two columns must be matched. SPARSPAK does this matching by scattering the non-zeroes
of the canceling columns into a dense contribution vector, and then gathering them into the destination column
once all contributions have been scattered. The right-looldng scheme, on the other hand, does a search through
the destination column for each non-zero in the canceling column to find the matching entry. The SPARSPAK
scheme is more efficient.

In Figure 2 we present the speedups obtained with the ORNL parallel factorization scheme, relative to the
sequential SPARSPAK code. This figure shows that the ORNL scheme achieves substantial speedups for all
but the smallest of the benchmark matrices. The speedups are not perfect primarily because the right-looking
sequential code on which the ORNL parallel code is based is less efficient than SPARSPAK on a single processor.

At this point, it may appear that little gain is possible in parallel factorization performance. The ORNL
parallel code is more than 5 times as fast as SPARSPAK when run on 8 processors. Thus, if we assume that
SPARSPAK is an efficient sequential code, then the ORNL parallel code appears to provide excellent parallel
performance. However, as we show in the next section the efficiency of the sequential code can be improved by
making use of the supemodal structure of the matrix. Although the new algorithm complicates the parallelization
of the factorization code, we show in section 5 that the added difficulty of parallelization can be overcome.

4 Supernodal Factorization with Cache-Miss Reducing Techniques

A faster sequential factorization code can be created by taking advantage of the supemodal structure of the
matrix [2]. Consider the matrix A of Figure 3, and its factor L. Although the columns of A appear quite
dissimilar in structure, many of the columns of the factor L appear nearly identical. This coalescing of column
structures occurs when factoring any matrix. Significant benefits can be obtained by taking advantage of this
coalescing of structures and eating sets of columns with nearly identical structures as groups, or supernodes. A
supernode is defined as a set of contiguous columns whose structure in the factor consi-s of a dense triangular
block on the diagonal, and an identical set of non-zeroes for each column below this diagonal block. In the
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Figure 3: Non-zero structure of a matrix A and its factor L.

example matrix, the supernodes are {1, 2}, {3}, {4, 5, 61, {7, 8, 91, and [10, 11}.

By making use of the properties of supemodes, a number of performance enhancements are possible. The
first has to do with reducing the number of references made to index vectors. Since the columns of a supernode
all have the same structure, they all cancel the same set of destination columns. In supernodal factorization, a
destination column is canceled by all the columns in a supernode as a single step; the step is called supemodal
elimination. This inass cancellation can be done by first adding together the appropriate multiples of each of
the columns in the supemode, and then adding the result into the destination column. If we assume that the
non-zeroes of a column are stored contiguously in increasing order by row, then the addition of columns within
the supemode can be done without regard for the rows in which each element resides. If we account for the
differing lengths of the diagonal block, then the remaining non-zeroes can simply be added together as dense
vectors. Only after all the columns of the supemode have been added together are the index vectors accessed
to determine where the entries of the net update are to be placed in the destination column.

The second source of performance improvement comes from the loop unrolling [4] which is possible when
adding the columns of a supemode together. Consider the memory references which occur when one column is
added into another. An element from each column is first loaded, then the arithmetic takes place, and then the
result is stored. We therefore perform two loads and one store for each element. If, on the other hand, we add
four columns into another column, then we would load one element from each of the four columns and one from
the destination, perform a number of arithmetic operations, and store one result. In this case we have performed
five loads and one store to do four column additions. This is substantially fewer references per column addition
than are done when doing a single addition. The result is again substantially fewer memory operations.

The third source of higher performance is a modification which allows the factorization to make better use
of the processor cache. In a nodal right-looking code, all of the cancellations done by a column k are performed
before those done by column k + 1. In the course of performing these cancellations, each of the destination
columns is read into the cache. This set of columns will typically require more space than is available in
the cache. Thus, by reading in a column, a previously read column will necessarily be displaced. Once the
cancellations by column k are complete, those of column A + 1 must be done. Column k + 1 will typically
cancel virtually the same set of columns as column A. Unfortunately, most of these will have been displaced
from the cache. The result is a very high cache miss rate. A similar effect occurs with SPARSPAK.

If we perform supemodal cancellation, and require that the supemode fits in the cache, then we can decrease
this miss rate. Assume that a supernode of 4 columns fits in the cache. We combine the cancellations of the 4
columns to another column into a single contribution vector, as was discussed before. While it is still the case
that the destination will most likely not be present in the cache, we will be able to perform four cancellations
to this column once it is fetched from main memory. If more columns of the supemode fit in the cache, then
more cancellations could be done per destination column fetch. Without this modification, we would expect to
do a single column cancellation per column fetch. This partitioned-supemodal approach results in a substantial
decrease in the number of cache misses.

A more detailed discussion of the advantages of supernodal factorization on a high-performance workstation
can be found in [12]. We simply present the results of the supemodal modifications here. In Table 3, we
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Table 3: Runtimes on one processor of an SGI 4D/380.

Right-looking
SPARSPAK partitioned- Runtime

supemodal ratio
Problem Time (s) NFLOPS Time (s) MFLOPS

DENSE750 45.22 3.12 18.13 7.79 2.5
LSHP3466 1.24 3.34 0.89 4.66 1.4
BCSSTK15 52.73 3.14 23.88 6.94 2.2
BCSSTK16 46.18 3.25 22.36 6.70 2.1
BCSSTK29 128.54 3.07 54.92 7.19 2.3

give performance figures for the right-looking partitioned-supernodal method of factorization, a method which
incorporates all of the techniques which have been discussed in this section. These runtimes are compared
with those of SPARSPAK; the runtime ratio column gives the ratio of the runtime of SPARSPAK to that of
the right-looking partitioned-supemodal scheme. As can be seen from this table, the supemodal code performs
sparse factorization at more than twice the speed of SPARSPAK. This supemodal sequential code forms the
basis for our parallel factorization code in the next section.

5 Parallel Supernodal Factorization

Our parallel supemodal code is best explained in terms of the ORNL parallel code. Both codes are based on the
right-looking approach to factorization, with the major difference being in the grain size of the parallel tasks. In
the ORNL code, columns are owned by specific processors. In the supemodal scheme, supernodes are owned
by processors. In the ORNL scheme, when a message is sent from one processor to another, it indicates that a
column is complete and the cancellations by that column to columns owned by the receiving processor should
be performed. In the supemodal scheme, a message indicates that an entire supernode is complete and the
corresponding updates should be performed.

One important consequence of the supemodal modification is that it substantially increases the task grain
size compared to the ORNL scheme. A single message now requires cancellations by an entire supemode.
Similarly, more work is required in order to complete a supemode which has received all cancellations from
other supemodes. In the ORNL scheme, a column which had received all cancellations simply has to be scaled
by the square root of the diagonal. In the supernodal scheme, cancellations must be done between columns
within the supernode.

An increase in task grain size is naturally accompanied by a decrease in the total number of tasks. This
decrease is not necessarily a bad thing, provided that there are still sufficiently many tasks to keep the available
processors busy. In the case of parallel supernodal factorization, however, the increase in grain size causes
severe load balancing problems. For example, in the extreme case of matrix DENSE750, the factor L forms a
single supernode. It therefore presents no possibility for concurrent work if all of the work associated with a
supernode is assigned to a single processor. While a more sparse matrix would clearly contain more supemodes,
the reduction of concurrency due to large supemodes is a problem for the other benchmark matrices as well.
As a result, it is necessary to decrease the task grain size. We choose to decrease the grain size by splitting
supemodes into a smaller pieces.

Now that we have decided to split supernodes, a question which immediately arises is how much splitting
should be done. That is, into how many pieces should a particular supernode be split? One major consideration
is that we would like to keep supernodes as large as possible. The sequential supemodal factorization code
was more efficient than the nodal code due entirely to the efficiencies which supernodal elimination make
possible. By splitting supemodes, we are decreasing the benefits of supernodal elimination, and thus making
the supemodal code more like the nodal code.

On the other hand, we wish to perform sufficient supernode splitting so that all available processors are kept
busy. For example, if three processors will sit idle while another performs the work of a single supemode, then
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we would be better off splitting that supernode into sufficiently many pieces so that all four processors could
work on it. We therefore wish to perform sufficient splitting to keep the available processors busy, while not
performing splittings which do not contribute to higher processor utilizations.

A third consideration has to do with the scheduling constraints imposed by the dependencies between the
factorization tasks. The degree to which a particular supernode should be split depends on the number of tasks
available at the time the supemode is processed. This information is determined by the dependencies between
the tasks, and by the schedule chosen for processing the tasks once they become available. The dependency
constraints, combined with the size constraints mentioned in previous paragraphs, make an optimal solution to
the problem infeasible.

We therefore resort to a heuristic solution to determine the supemode splitting. Our heuristic is based on
the observation that the amount of concurrency available in a right-looking parallel factorization decreases as
the computation proceeds. This decrease can be better understood by considering the elimination tree of the
matrix [10]. The elimination tree captures the dependencies between the columns of the matrix, expressing
these dependencies in the form of a tree structure. A column is dependent only on those columns in the subtree
below it in the elimination tree, and equivalently a column only modifies the columns which are in the path
from itself to the root of the tree. Also, columns which do not have an ancestor/descendent relationship are not
dependent on each other. The elimination tree of the matrix in Figure 3 is shown in Figure 4.

The decrease in available concurrency is due to two factors. First, the elimination tree, which is processed
bottom-up, clearly becomes narrower as we move up the tree. A narrower tree corresponds to a smaller set of
independent tasks which may be processed in parallel. The second factor has to do with the overlapping of the
cancellation work of a column. Consider a column which is closer to the leaves of the elimination tree. Once
it is completed, it can potentially cancel all of the columns in the path from itself to the root of the elimination
tree. A column which is closer to the root of the elimination tree, on the other hand, cancels a smaller set
of columns. Since these cancellations can be done in parallel, the cancellations resulting from the completion
of a column close to the root provide less opportunity for parallelism than those of a column closer to the
leaves. Thus, the available concurrency decreases as we move up the elimination tree, due to (i) a decrease in
the number of independent columns which can be processed in parallel, and (ii) a decrease in the number of
cancellations done per column.

The collection of a number of columns into an indivisible set, a supemode, naturally has the effect of
decreasing the amount of available concurrency. If more than enough concurrency is available (e.g. close to the
leaves of the elimination tree), then we can afford to reduce the available concurrency by grouping columns
into supemodes. However, as the amount of overall concurrency decreases, the size of the supernodes should
decrease as well, so that enough concurrency is available to keep all of the available processors busy. We tried a
number of heuristics which took these considerations into account. The most effective of these splits supernodes
based solely on their height in the elimination tree. This heuristic begins at the supemode at the root of the
elimination tree, and traverses down. Starting from the top, it breaks this supemode into 3 * P pieces of 4
columns each, where P is the number of processors. The multiplier 3 was determined empirically. It continues
the splitting with 3 * P pieces of 8 columns each, followed by 3 * P pieces of 12 columns each, and so on.

8
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Figure 5: Speedups (relative to a sequential supemodal code).

When a branch in the elimination tree is reached, then the splitting continues with each of the supemodes below
the branch as if the branch had not occurred. Thus, for example, if the root supemnode is exhausted after the
third piece of size 8, then the children of this supemnode will each begin with the fourth piece of size 8. Note
that such a strategy gradually increases the size of the supernodes as the depth in the elimination tree increases.

This heuristic is by no means the only one which we tried. One of our other heuristics split all supernodes
into fixed size pieces. The piece size was chosen to be large enough so that most of the benefits from supernodal
elimination were retained, but at the same time the pieces were small enough so that they did not create substantial
load balancing problems. None of the piece sizes tried resulted in parallel runtimes faster than those obtained
with the heuristic described in the previous paragraph. Another heuristic that we tried split supernodes based on
the amount of work contained in the subtree of the elimination tree below that supernode. The intuition behind
this approach was that if a subtree contained 40% of the factorization work, then 40% of the processors would
be working on that subtree. The supemnode at the root should therefore contain enough concurrency to keep
these processors busy. Again, this heuristic did not result in improved performance. More details concerning
variations on the splitting strategy can be found in [11].

In Figure 5 we present the speedups obtained with our parallel supemnodal code, using the above splitting
strategy. These speedups are all relative to the sequential right-looking partitioned-supemnodal code described
in the previous section. Note that the speedups are quite similar to those obtained by the ORNL parallel code.
Since the sequential supemnodal code is roughly twice as fast as SPARSPAK, the supernodal parallel code is
therefore roughly twice as fast as the ORNL parallel code.

In order to better compare the relative performance of the two parallel codes, we show in Figure 6 the ratio
of the runtime of the ORNL parallel code to that of the supemodal parallel code for the same matrix. Note that
the ratio is between 2 and 3 for each choice of number of processors. In terms of absolute performance, the
supemnodal parallel code performs the factorization at a rate of approximately 40 MFLOPS for the majority of
the benchmark matrices when using 8 processors.

It is interesting to consider how these parallel factorization schemes would compare on a machine with
more processors. In [11], we looked at the performance of our supernodal scheme, as compared with that of
the ORNL scheme, on a simulated multiprocessor with up to 32 processors. We found that the performance
advantage enjoyed by the supemnodal code decreased noticeably as the number of processors was increased.
When using more processors, the supemnodes had to be split into smaller pieces to keep the processors busy,
thus decreasing their benefit. This decrease is much less noticeable on the SGI 4D/3 80. We believe that this is
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Figure 6: Relative runtimes (ORNL runtime divided by supemodal runtime).

due to the fact that the nodal code exhibits a much higher cache miss rate than the supemnodal code. This higher
miss rate translates into more traffic on the shared bus, and thus more contention between the processors. Since
our simulation in [ 11) did not model contention for shared memory, its effect was not visible in that study. On
a multiprocessor with a larger number of processors than the 4D/380 and a similar memory system, it is not
clear which of these two effects, the decrease in relative performance due to supemnode splitting or the increase
due to less demand for the shared memory, would prevail.

6 Conclusions

In this paper, we have considered the problem of performing sparse Cholesky factorization on a high-performance
multiprocessor workstation. We began by looking at the parallel factorization scheme developed at the Oak Ridge
National Laboratory. The performance of the ORNL parallel code was compared with that of SPARSPAK and
that of a sequential implementation of the ORNL scheme. We found that the ORNL parallel code gave good
parallel speedups, relative to the sequential codes. However, these sequential codes were later shown to be less
efficient by a factor of two than another sequential code. Thus, good speedups relative to these sequential codes
proved not to imply good performance overall.

We then discussed supemnodal factorization, and described a parallel supemnodal factorization code. A
heuristic was described for dealing with the load balancing problems which supemnodal elimination created. The
parallel superodal code with heuristic load balancing was between two and three times as fast as the ORNL
code, when using up to eight processors. This increase in performance was mainly due to a reduction in memory
traffic requirements.

We also found that both the nodal and supernodal codes achieved substantial speedups using as many as 8
processors attached to a single bus. One might expect eight high-performance processors to saturate a moderate
bandwidth shared bus when performing computations on large matrix problems. This was not the case, due to
the fact that sparse Cholesky factorization algorithms make effective use of a cache, thus keeping traffic off of

the bus.

The parallel superodal code performed the sparse factorization at a rate of roughly 40 MFLOPS on eight
processors. In order to put this figure in perspective, we compare the computation rates obtained on our
paralel scalar machine with those that can be obtained on a vector supercomputer. In Table 4 we compare the

to



Table 4: Comparison of SGI 4D/380 and CRAY Y-MP.

1SGI 4D/380, 8 processors a CRAY Y-MP2

Name Time (s)] MFLOPS Time (s) IMFLOPS Ratio

BCSSTK23 3.32 35.9 0.62 191.6 5.4
BCSSTK15 3.98 41.5 0.84 197.7 4.7
BCSSTK16 4.06 36.8 0.79 190.8 5.1
BCSSTK29 10.34 38.0 2.16 182.3 4.8

performance of an 8 processor SGI 4D/380 with that of a single processor of the CRAY Y-MP (as given in
[13]). The CRAY numbers are from a hand-coded, CRAY assembly language implementation of supemodal
sparse factorization. As can be seen from this table, the multiprocessor achieves approximately one fifth of the
floating point performance of the CRAY on this problem. Considering the relative costs of these two machines,
multiprocessor workstations appear to be extremely cost-effective machines for factoring large, sparse, positive
definite matrices.

Acknowledgments

We would like to thank Jeff Doughty, James Winget, and Forest Baskett at Silicon Graphics for helping us to get
access to an SGI 4D/380. We would also like to thank John Gilbert and Horst Simon for their helpful comments
on sparse factorization terminology. This research is supported by DARPA contract N00014-87-0828. Edward
Rothberg is also supported by a grant from Digital Equipment Corporation.

References

[1] Archibald. J.. and Baer. J.-L., "An economical solution to the cache coherence problem", Proc. of the 15th
Annual Int. Sym. on Computer Architecture, 355-362, 1985.

[2] Ashcraft, C., Grimes, R., Lewis, J., Peyton, B. and Simon, H., "Recent progress in sparse matrix methods
for large linear systems", International Journal of Supercomputer Applications, 1(4):10 - 30, 1987.

[3] Baskett, F., Jemoluk, T., and Solomon, D., "The 4D-MP graphics superworkstation: Computing + graphics
= 40 MIPS + 40 MFLOPS and 100,000 lighted polygons per second", COMPCON 88, 468-471, 1988.

[4] Dongarra. ILJ., and Eisenstat, S.C., "Squeezing the most out of an algorithm in CRAY FORTRAN", ACM
Transactions on Mathematical Software, 10:219-230, 1984.

[5] Duff, I., Grimes, R., and Lewis, J., "Sparse Matrix Test Problems", ACM Transactions on Mathematical
Software, 15(1):1 - 14, 1989.

[6] Duff, I. and Reid, J., "The multifrontal solution of indefinite sparse symmetric linear systems", ACM
Transactions on Mathematical Software, 9:302-325, 1983.

[7] Geist, G.A., and Ng, E., A partitioning strategy for parallel sparse Cholesky factorization, Technical Report
TM-10937, Oak Ridge National Laboratory, 1988.

[8] George, A., Heath. M., Liu, J., and Ng, E., Solution of sparse positive definite systems on a hypercube,
Technical Report TM-10865, Oak Ridge National Laboratory, 1988.

[9] George, A., and Liu, J., Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey, 1981.

2 The Y-MP times reported in [13] are from a machine with a slower clock speed than that of the production Y-MP. We have adjusted

the times to account for the fact that a production machine would be slightly faster.

11



[10] Liu, J., "The role of elimination trees in sparse factorization", SIAM Journal on Matrix Analysis and

Applications, 11(1):134-172, 1990.

[11l Rothberg, E., and Gupta, A., A comparative evaluation of nodal and supernodal parallel sparse matrix

factorization: Detailed simulation results, Technical Report STAN-CS-90-1305, Stanford University, 1990.

[12] Rothberg, E., and Gupta, A., Fast sparse matrix factorization on modern workstations Technical Report

STAN-CS-89-1286, Stanford University, 1989.

[131 Simon, H.D., Vu, P., and Yang, C., Performance of a supernodal general sparse solver on the CRAY Y-MP:

1.68 GFLOPS with autotasking, Technical Report SCA-TR- 117, Boeing Computer Services, 1989.

12


